

High Power, Low Cost SOFC Stacks For Robust And Reliable Distributed Generation (DE-FE0026189) and Red-Ox Robust SOFC Stacks for Affordable, Reliable Distributed Generation Power Systems (DE-FE0027897)

Sean R. Bishop, Luis Correa, Ke-ji Pan, Colin Gore, Lei Wang, Stelu Deaconu, Tom Langdo, Bryan Blackburn (PI) Redox Power Systems College Park, MD, USA

June 12, 2017

• **Purpose:** Develop high power density, intermediate temperature (600-650 °C) SOFC stacks for reliable distributed generation.

- **Objective**: Improve performance/durability of IT-SOFC stacks while reducing costs
 - Scale-up of current stack module designs from 1 kW to 5 kW
 - Determination of cell and stack degradation mechanisms
 - Cell and stack optimization to improve long-term stability
 - Cost analysis with a 20% manufacturing cost reduction

- Understand degradation under operating conditions, aided with accelerated test protocols
- Improve structure, manufacturing, and metrology for cells as well as stack assembly procedures for improved reliability
- Optimize stack designs with enhanced multi-physics model (e.g., reduce thermal gradients and mechanical stresses expected from increased stack size)

Project Partners:

ENERGY RESEARCH CENTER

Additional Redox Partners:

(**REDOX**) Electrode and Contact Degradation

Screen printed electrodes before and after aging at 650 °C for 100 h in air

Sheet resistance (Van der Pauw)

Polarization ASR of symmetric cells

- Most cathodes and contacts show ~10% change after 100 h ("burn-in")
- Infiltration improves initial performance
- Test plan developed for >1000 h aging of cathodes and contacts of interest

Redox Power Systems LLC - 6/12/2017

REDOX Anode Morphology Degradation

Ni cermet anode aged for 1,000 h at 650 °C in humidified 3% $\rm H_2$, then 1000 h aged in humidified 3% $\rm CH_4,$

10, B214 (2007).

- Evidence for Ni coarsening in SEM cross-sections
- Future work:
 - Quantitative analysis with FIB/SEM planned
 - Evaluate role of high steam contents typical of reformate

REDOX Gen. 1 (Ni-Cermet) Half-Cell Strength

- Half-cell test coupons show reproducible strength values
- 650 °C and RT show similar strength
- Reduced and as prepared cells have similar strength (\downarrow strength from porosity, \uparrow strength from Ni ductility*)
- Failure strength of half-cells after long-term aging planned
 - *Radovic and Lara-Curzio, Acta Materialia 52 (2004) 5747 Redox Power Systems LLC – 6/12/2017

7

- Identification of critical processing defects (UMERC+CALCE)
 - Metrology (Optical profilometry) ٠
 - Mechanics (Bend bars, indentation) ٠
 - Quality assurance purposes

chemical stresses in seal region (CALCE) Load on cell SOFC unit **Stainless** H₂ or Air Steel Detect H₂ or air leakage rate (e.g., GC) Seal Cell Seal thermal 0.7 expansion measured 0.6 Expansion [%] at Redox 0.2 0.1 0.0 100 200 300 400 500 600

Temperature [C]

Evaluation of in and out of plane thermo-

- Add ability to assess mechanical stress due to thermal gradients and phenomena such as creep at elevated temperatures
- Optimize stack design through parametric studies
 - modify cell geometry/composition and interconnect flow field geometry)
 - minimize pressure drops
 - improve flow distribution
 - minimize thermal gradients

REDOX Quality Assurance Improvements

Cell and materials

In-plane resistance

Paste uniformity and viscosity

Optical profilometry

Particle size analysis, bulk conductivity, XRD, etc.

Stack assembly

- Documentation
- Acoustic emissions and Distributed Force Sensing (DFS) during assembly
- Gas leak check before and after testing

REDOX *In situ* stress monitoring of cells during stack assembly

- Spatial stress monitoring real-time during stack assembly
- Correlation of regions of high stress with mechanical failure
- Acoustic emissions also monitored spatially for mechanical failure location identification

(REDOX) Stack Evaluation Instrumentation

Seal

Suite of tools for evaluation of stack performance, such as:

- GC for mass balance and leakage evaluation
- Impedance spectroscopy electrochemical characterization
- Individual cell voltage monitoring
- Inlet and outlet cathode and anode temperature
- \rightarrow Identification of key areas limiting initial and long-term performance

(REDOX) Independent 3rd Party Evaluation

- Demonstrated reproducible power densities
- 4% higher performance in 3rd party test

- Compressive stack design
- Extensive multi-physics modeling (e.g., structural, sealing, and fluidic flow field design changes)
- Improvements to assembly process and initial results from modeling efforts → next iteration = ↑ performance

Gen. 2 - porous anode SOFC (development sponsored by DOE-EERE)

REDOX Summary of NETL-1 Efforts

- Investigations into degradation mechanisms
 - Electrical and electrochemical performance of aged electrodes and contacts
 - Morphology changes in anode
- Stack assembly, testing, and design upgrades
 - Distributed force sensing (DFS) in addition to previous sensing capabilities
 - Suite of stack evaluation tools
- Cell process improvements
 - Manufacturing quality assurance protocols and documentation
 - Metrology for critical process defect identification
- Demonstrated stack reproducibility and 0.5 kW power
- Achieved good long-term (250 h) cell voltage stability

- **Purpose:** Develop a high power density, **red**uction-**ox**idation (red-ox) stable SOFC for lower cost distributed generation.
- **Objectives:** Improve the red-ox stability of Redox stacks while reducing costs
 - Scale-up and optimization of all-ceramic anode material processing and cell fabrication for lower cost manufacturing
 - Determine all-ceramic anode degradation mechanisms and optimize anode compositions/geometries for enhanced red-ox stability
 - Demonstration of a 1-2 kW, robust for red-ox cycling stack
 - Demonstration >10% reduction in system cost and >30% reduction in O&M costs compared to a system without a red-ox stable stack

Red-ox cycles can be expected during long-term fuel cell operation

- Interruptions in fuel supply
- Transient SOFC operation (e.g., shutdown)

Ni-cermet anodes prone to mechanical failure during redox cycling

Journal of Power Sources 195 (2010) 5452-5467

~69 vol% expansion of Ni \rightarrow NiO

(REDOX) All Ceramic Anode SOFC Performance

- High power densities •
 - ~0.75 W/cm² @ 550°C
 - ~0.3 W/cm² @ 450 °C
- Acceptable electronic conductivity ٠

Seal and Gen.1 Cell (Ni-Cermet) Red-Ox Cycling Stability

Gas crossover (anode \leftrightarrow cathode) measured during Red-Ox cycling (650 °C)

- Ni-cermet half-cell → large crossover even after 3 cycles of only H₂ ↔ N₂ (<0.02% O₂)
- Cracking of Ni-cermet \rightarrow red-ox cycling instability
- Seals with Al₂O₃ sheet "mock cell" show small increase in cross-over with cycling (H₂ ↔ air) → seals are robust

~1% half-cell expansion on oxidation

~1% non-recoverable linear expansion after 3 red-ox cycles \rightarrow possible source of small increase in cross-over

(REDOX) All-ceramic anode redox cycling

Conductivity stable over multiple red-ox cycles in H₂ and N₂, and H₂ and air

Long-Term All Ceramic SOFC Performance

- Performance stable with Ni-GDC anode infiltrate composition
- Degradation rate dependence with Ni-GDC ratios
- Coarsening of Ni → degradation

10 cm x 10 cm half cell

50% fracture strength of Gen. 1 (Ni-cermet)
half-cells (4 pt. bend)
→ strong enough for handling and SOFC

Universal Test Machine

testing

In situ bend bar test rig (UMERC)

Alumina 3-point bend fixture

Atmosphere/ temperature control for mechanical tester

- Process flow model with associated costs
- Monte Carlo simulation (output of model will be a probability distribution of costs)
- Discrete event simulator
 - Evaluate impact of component failures over system lifetime
 - Aid in development of warranty and related business model
 - Estimates of natural gas disruptions

REDOX Identification of All-Ceramic Failure Modes

- Identified stability of all-ceramic anode cell components stability in red-ox cycles
 - All-ceramic half-cell exhibits minimal in-plane conductivity degradation after multiple red-ox cycles
 - Cell seal shows low increase in leakage with 20 red-ox cycles
 - Conventional Ni-cermet cell cracks and leaks in less than 3 red-ox cycles
- Key all-ceramic anode degradation modes identified and under evaluation
 - Ishikawa diagram maps out key degradation modes
 - Metal catalyst infiltrate coarsening Ni:GDC ratio change
- Demonstrated capability to fabricate 10 cm x 10 cm all-ceramic anode half-cell
 - Strength half of Gen. 1 Ni-cermet cells, sufficient for SOFC testing
- Cost model for all-ceramic anode under development

- •NETL Project Manager
 - Seth Lawson

- University of Maryland
 - Energy Research Center (fundamental R&D) Prof. Wachsman
 - Dr. Mohammed Hussain, Dr. Chris Pellegrinelli, Ian Robinson, Albert Painter, Patrick Stanley, Thomas Hays, and Dr. Abhishek Jaiswal
 - CALCE (accelerated / lifecycle test plans) Prof. Pecht/Diganta Das
 - Nripendra Patel, Robert Gutter, and Dr. Diganta Das